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A b s t r a c t  

The accuracy and scope of application of previously reported approximations of the tempera- 
ture integral were evaluated. The exact solution was obtained independently by solving the tem- 
perature integral numerically be Simpson's rule, the trapezoidal rule and the Gaussian rule. 

Two new approximations have been proposed: 

P(X) = e-X(1/X 2)(1-21X)/(1-5.2/X 2) 

P(X) = e-~(1/X 2)(1-2/X)/(1-4.6/X 2) 

where X = E/RT. The first equation gives higher accuracy, with a deviation of less than 1% and 
0.1% from the exact solution for X-> 7 and X> 10, respectively. The second equation has a 
wider scope of application, with a deviation of less than 1% for X > 4 and of less than 0.1% for 
X>  35. 

Keywords: kinetics, thermal analysis 

Introduction 

By means of nonisothermal thermoanalytical techniques, changes in mass 
and concentration or enthalpy changes of a substance can be recorded automat- 
ically and continuously as a function of temperature. In the course of pro- 
grammed heating, the changes in mass of a sample can be automatically 
recorded by thermogravimetry (TG). The volatile products formed during the 
heating process are usually recorded by either evolved gas detection (EGD) or 
evolved gas analysis (EGA) techniques. The enthalpy changes are recorded by 
differential scanning calorimetry (DSC) or differential thermal analysis (DTA). 
The modern thermoanalytical instrument universally incorporates a computer 
for the control and data processing. Consequently, it ensures accurate data re- 
cording on processing and is therefore less prone to error, data processing be- 
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coming very rapid and convenient. As a wealth of valuable information can be 
obtained from a single measurement, the nonisothermal methods are more and 
more popular, and the number of their applications is on the increase. In recent 
years these techniques have been widely employed to investigate various kinetic 
problems, e.g. the kinetics of chemical reactions such as decomposition, oxida- 
tion, dehydration, polymerization, crosslinking and degradation; the kinetics of 
physical changes such as crystallization and crystalline transition; and the kinet- 
ics of surface reactions such as adsorption. A difficulty in nonisothermal ki- 
netic methods is that there is no exact analytical solution of the temperature 
integral. In order to express the integral, Doyle in 1961 suggested an approxi- 
mation in logarithmic form [1]. Subsequently, a number of approximations 
were proposed in succession, notably those suggested by Coats and Redfern in 
1964 [2], Gorbachev in 1975 [3], Li in 1985 [4], and Agrawal in 1987 [5]. 
Their methods successively improved the accuracy of the approximate solutions 
and thereby enlarged the scope. 

The object of the present study was to compare the accuracy and scope of 
these approximations so as to correctly select and use them in kinetic studies in- 
volving thermal analysis; simultaneously, an attempt was made to seek approxi- 
mations which are more accurate, simple and easily applied. Two new 
approximations have been developed, one is more accurate, while the other may 
be used over a wide range of values of E/RT. 

New temperature integral approximations 

The rate of reaction of a substance is generally expressed as 

det/dt -- KJ(cz) (1) 

where cz represents the fraction of substance reacted at time t, f(ct) is a function 
of ct depending on the reaction mechanism, and K is the specific rate constant 
given by the Arrhenius equation: 

K = Aexp(-E/RT)  (2) 

where A is the pre-exponential factor, E is the activation energy, R is the uni- 
versal gas constant, and T is the absolute temperature. For a nonisothermal sys- 
tem, a constant heating rate is often used: 

dT/dt = 13 (3) 

Substituting Eqs (2) and (3) into Eq. (1) and separating variables, we get 
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do~/flct) = A/[3exp(-E/RT)dT (4) 

Ordinarily, the rate of the reaction at low temperatures is low enough to be 
neglected, and thus the left and right-hand sides of Eq. (4) may be integrated 
from 0 to a a n d  from 0 to T, respectively: 

~ T 

~d~/fla) = A / [3 fexp(-E/RT)dT (5) 
O O 

T 

fexp(E/RT)dT on the right-hand side of Eq. (5) is known as the temperature 
O 

integral and is not analytically integrable. 
Let X = EIRT. Then 

T oo 

fexp(-E/RT)dT= E/R ~e-X/X 2dX= E/RP(X) 
o X 

(6) 

Since E/R is a constant, solving the temperature integral involves finding an 
expression for the function P(X). 

P(X) can be solved by various methods, and the final solution for P(X) is an 
infinite series. 

Two series developments often used are as follows: 

P(X) = e-X/X2[1 - 2!/X + 3!/X 2 - . . . . . .  ] (7) 

P(X) = [e-X/X(X + 1)Ill - 1 / ( X + 2 ) + 2 / ( X + 2 ) ( X + 3 ) - .  . . . . .  ] (8) 

For X in a definite range, the logarithmic values of P(X) have been tabulated 
[ 1]. Since plots of log P(X) vs. X reveal an approximately linear relation, Doyle 
obtained a simple approximation by regression analysis: 

logP(X) = -2.315 - 0.4567X (20 < X < 60) (9) 

Coats and Redfern [2] used the first two terms of the asymptotic series in 
Eq. (7) as an approximation of P(X): 

P(X) = e-X(1/X2)(1 - 2/X) (lO) 

From the first two terms of the asymptotic series in Eq. (8), Gorbachev [3] 
suggested the following equation: 
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P(X) = e-x(1 /X)[1/(X + 2)] (11) 

The approximation later derived by Lee and Beck [6] is actually the same as 
the Gorbachev equation. On multiplication of the numerator and denominator 
by (1-2/X), Eq. (11) can be transformed into 

P(X) = e-X(1/X2)(1 - 2/X)/(1 - 4/X 2) (12) 

Li [4] integrated the temperature integral by parts twice to arrive at the equa- 
tion 

P(X) = e-X(1/X2)(1 - 2/X)/(1 - 6/X 2) (13) 

As Eqs (12) and (13) lead to positive and negative derivations, respectively, 
from the exact solution, Li developed two methods to obtain a more precise so- 
lution of P(X) by use of their average or weighted average: 

P(X) = 1/2(Q1 + Q2) (14) 

P(X) = 1/3(Q1 + Q2) (15) 

where Q1 and Q2 represent the right-hand sides of Eqs (12) and (13), respec- 
tively. Li's methods require the calculation of Q1 and Q2, and are therefore in- 
convenient. 

Table 1 Seope of application and aeeuracy for various approximations 

Approximation 
Absolute value of percentage deviation 

Less than 1% Less than 0.1% Note 

Agrawal Eq. (16) X > 6 X > 24 

Li Eq. (13) X> 10 X>_ 22 

Gorbaehev Eq. (11) X> 12 X> 42 

Coats and Redfern Eq. (10) X -> 24 

Doyle Eq. (9) - - 

This work Eq. (17) X>_ 7 X-> 10 

This work Eq. (18) X > 4 X -> 35 

When X > 7, the deviation 

is within 0.2% 

When 28 _< X < 50, the 

deviation is within 5 % 

By comparing Eqs (12) and (13), Agrawal [5] found that the only difference 
is the coefficient of the term X 2 in the denominator. The former is the integer 4, 
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Fig. 1 Deviation of various approximations from Simpson's 1/3 rule: ( - - )  Agraval, (---) Gor- 
bachev, ( - -  - -  - - )  Doyle, ( . . . .  ) This work Eq.(18), (..-) Li, ( -  - -)  Coats and 
Redfern and ( - - . - - )  This work Eq.(17) 

and results in a negative deviation, whereas the latter is the integer 6 and results 
in a positive deviation. Hence, by replacing the integer by 5, Agrawal proposed 
a simpler and more precise approximation: 

P(X) = e-X(1/XZ)(1 - 2/X)/(1 - 5/X z) (16) 

In order to improve the preciseness of the approximation further, we studied 
how the coefficient of the term X 2 in the denominator affects the deviation. The 
results of our calculations lead us to propose that the following two new ap- 
proximations of the temperature integral are superior: 

P(X) = e-X(1/XZ)(1 - 2/70/(1 - 5.2/X z) (17) 

P(X) = e-x(1/XZ)(1 - 2/X)/(1 - 4.6/X z) (t8) 

Their form is the same as that of Eqs (12), (13) and (16) but the coefficient 
of the term X 2 in the denominator is 5.2 and 4.6, respectively. Equation (17) 
gives the higher accuracy, whereas Eq. (18) has a wider applicability. 
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Evaluation of accuracy of various approximations 

The reference value of the temperature integral was obtained independently 
by numerically integrating the integral, using the 1/3rd Simpson's rule, the 
trapezoidal rule and the Gaussian rule. The values from these methods are in 
excellent accordance. Total agreement between the calculated values and the 
mathematical tables of Abramowitz and Stegun [7], and between its logarithm 
and the log P(X) table given by Doyle proved the preciseness of the reference 
values. The calculated percentage absolute deviations of various approximations 
from the 1/3rd Simpson's rule agreed with Table 2 in reference [5], further con- 
firming the accuracy of the reference values. 

Table 2 Comparison of the deviation for various approximations 

X =  E / R T  This work Eq. (17) Agrawal Eq. (16) This work Eq. (18) 

3 23.12 16.96 6.33 

4 6.06 4.13 0.47 

5 2.46 1.43 -0.56 

6 1.15 0.50 -0.78 

7 0.57 0.11 -0.79 

8 0.28 -0.06 -0.74 

9 0.12 -0.14 -0.67 

10 0.03 -0.18 -0.60 

15 -0.08 -0.17 -0.35 

20 -0.08 -0.13 -0.23 

25 -0.06 -0.09 -0.16 

30 -0.05 -0.07 -0.11 

40 -0.03 -0.04 -0.07 

50 -0.02 -0.03 -0.04 

60 -0.01 -0.02 -0.03 

70 -0.008 -0.01 -0.02 

Figure 1 shows the effects of variation of X on the percentage deviations of 
various approximations from the exact solution. 

Table 1 summarizes their scope of application and accuracy. From these, it 
can be clearly seen that in the previously reported approximations of the tem- 
perature integral the Agrawal equation is the most superior, followed in turn by 
the Li, Gorbachev, Coats and Redfern, and Doyle equations. 

Table 2 presents data on the deviations of the proposed Eqs (17) and (18) 
and the Agrawal equation (16) from the exact solution. The results indicate that 
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when X _> 9 Eq. (17) is superior to Eq. (16). Equation (16) deviates by less than 
0.1% for X ___ 24, whereas Eq. (17) deviates by less than 0.1% for X >_- 10. The 
increase in accuracy is very obvious. However, when X > 9, Eq. (17) is some- 
what inferior to Eq. (16). For values of Xbelow 6, the deviations for both equa- 
tions increase rapidly and exceed 1%. In this case, Eq. (18) is more suitable. 
Its deviation is less than 1% for X _ 4, Which is small by comparison with that 
for the other equations. 
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Fig. 2 Deviation of the logarithm of various approximations from the logarithm of the exact 

solution: ( - - )  Agraval, (---) Gorbaehev, ( - -  - -  - - )  Doyle, ( . . . .  ) This work 
Eq.(18), (...) Li, ( -  - -)  Coats and Redfern and ( - - - - - )  This work Eq.(17) 

\ 

Table 3 Scope of a application and accuracy for the logarithm various approximations 

Approximation 
Absolute value of percentage deviation 

Less than 1% Less than 0.1% 

Agrawal Eq. (16) X -> 4 X > 7 

Li Eq. (13) X>_5 X>_9 

Gorbachev Eq. (11) X>  4 X>_ 10 

Coats and Redfern Eq. (10) X>  7 X >  17 

Doyle Eq. (9) 21 < X < 80 29 <-- X < 50 

This work Eq. (17) X >  4 X >  7 

This work Eq. (18) X >  3 X >  4 
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As described above, X = E/RT, i.e. X is a function of the activation energy 
E and the temperature T. Therefore, the approximations can be used appropri- 
ately according to the characteristic of each reaction. If X >_ 7, Eq. (17) is rec- 
ommended, while if 4 _< 7, Eq. (18) would be best. However, for X > 4  the 
deviations of the above equations from the reference values are still large, and 
it is necessary to search for even more accurate approximation. 

Figure 2 presents the relations of the percentage deviation of log P(X) for 
various approximations from the logarithm of the exact solution. The range of 
accuracy of various approximations in the logarithmic case is shown in Table 3. 
It appears that the deviations become smaller. This is because taking logarithms 
leads to a decrease in the sensitivity of these equations, and therefore care must 
be taken when using the approximations in logarithmic form. 
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Zusammenfassung - -  Es erfolgt eine Absch/itzung der Genauigkeit und der M6glichkeiten der 
Anwendung von zuvor besehriebenen Ann/iherungen des Temperaturintegrales. Die exakte L6- 
sung wurde durch numerisches L6sen des Temperaturintegral mittels der Simpson'schen Regel, 
der Trapezregel und der Gaufl'sehen Regel erhalten. 
Es werden zwei neue N/iherungen vorgesehlagen: 

P(X) = e-x(1/X 2)(1-2/X)/(1-5.2/X 2) 

P(X) = e-x(1/X2)(1-2/X)/(1-4.6/X 2) 

wobei X = E/RT bedeutet. Die erste Gleichung ergibt eine gr6fiere Genauigkeit mit einer Devia- 
tion von weniger als 1% bzw. 0,1% bei der exakten L6sung f/it X -> 7 bzw. X > 10. Die zweite 
Gleiehung bietet breitere Einsatzm6glichkeiten mit einer Deviation von weniger als 1% fiir X'e_ 4 
und von weniger als 0.1% ffir X>_ 35. 
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